时间简史
时间不能完全脱离和独立于空间,而必须和空间结合在一起形成所谓的时空的客体。
一个事件是在特定时刻和在空间中特定的一点发生的某件事。这样,人们可以用四个数或坐标来指定它。坐标系的选择是任意的;人们可以使用任何三个定义好的空间坐标和任何时间测度在相对论中,在时间和空间坐标之间没有真正的差别,犹如在任何两个空间坐标之间没有真正的差别一样。
为了结婚,我需要一份工作;为了得到工作,我需要一个博士学位。
不确定性原理使拉普拉斯的科学理论,即一个完全确定性的宇宙模型的梦想寿终正寝:如果人们甚至不能准确地测量宇宙现在的状态,那么就肯定不能准确地预言将来的事件!
仅仅在我们的星系中,大约总共有1000亿颗可见恒星。
对于像人这么复杂的机体,其制约和决定方式是不可能计算出来的。我们之所以说人们具有意志,乃在于我们不能预言他或她的未来行动。
在18世纪,哲学家把包括科学在内的整个人类知识当做他们的领域,并讨论诸如宇宙有无开端的问题。然而,在19世纪和20世纪,对哲学家或除了少数专家以外的任何人来说,科学变得过于专业性和数学化了。
哲学家把他们的质疑范围缩小到如此程度,以至于连维特根斯坦,这位20世纪最著名的哲学家都说道:“哲学余下的任务仅是语言分析。”这是从亚里士多德到康德哲学的伟大传统的何等堕落啊!
当一本题为《100个反爱因斯坦的作家》的书出版时,他反驳道:“如果真是我错了的话,有一个人反对我就足够了!”
早在公元前340年,希腊哲学家亚里士多德在他的《论天》一书中,就能够对于地球是一个圆球而不是一块平板这个信念提出两个有力的论证。
第一,他意识到,月食是由于地球运行到太阳与月亮之间引起的。
第二,希腊人从旅行中知道,在南方观测北极星,比在较北地区,北极星在天空中显得较低。
希腊人甚至为地球是球形提供了第三个论证,否则何以从地平线驶来的船总是先露出船帆,然后才露出船身?
哈勃的观测暗示存在一个叫做大爆炸的时刻,当时宇宙的尺度无限小,而且无限紧密。在这种条件下,所有科学定律并因此所有预见将来的能力都崩溃了。
由于更早的时间根本没有定义,所以在这个意义上,人们可以说,时间在大爆炸时有一开端。
理论只不过是宇宙或它的受限制的部分的模型,以及一族把这模型中的量和我们做的观测相联系的规则。
一个好的理论必须满足以下两个要求:首先,这个理论必须能准确地描述大量的观测——这些观测是根据只包含少数任选的元素的模型所做出的;其次,这个理论能对未来观测的结果作出明确的预言。
在只是一个假设的意义上来讲,任何物理理论总是临时性的:你永远不可能证明它。不管多少回实验的结果和某个理论相一致,你永远不可能断定下一次结果不和它矛盾。另一方面,哪怕你只要找到一个和理论预言不一致的观测事实,即可证伪之。正如科学哲学家卡尔·波普强调的,一个好的理论的特征是,它能给出许多在原则上可以被观测否定或证伪的预言。
我们现在关于物体运动的观念来自于伽利略和牛顿。在他们之前,人们相信亚里士多德,他说物体的自然状态是静止的,并且只有在受到力或冲击的推动时才运动。
1676年,丹麦的天文学家欧尔·克里斯琴森·罗默第一次发现了光以有限但非常高的速度旅行的事实,他观察到,木星的卫星不是以等时间间隔从木星背后出来。
麦克斯韦方程预言,在合并的电磁场中可以存在波动的微扰,它们以固定的速度,正如池塘水面上的涟漪那样行进。
一位迄至当时还默默无闻的瑞士专利局的职员阿尔伯特·爱因斯坦,在1905年的一篇著名的论文中指出,只要人们愿意拋弃绝对时间观念的话,整个以太的观念则是多余的。
爱因斯坦著名的方程E=mc2来表达(E是能量,m是质量,c是光速)。
相对论限制了物体运动的速度:任何正常的物体永远以低于光速的速度运动,只有光或其他没有内禀质量的波才能以光速运动。
相对论的一个同等非凡的推论是,它变革了我们空间和时间的观念。
米是被定义为光在以铯原子钟测量的0.000000003335640952秒内行进的距离(取这个特别数字的原因是,因为它对应于历史上的米的定义——按照保存在巴黎的特定铂棒上的两个刻度之间的距离)。
时间不能完全脱离和独立于空间,而必须和空间结合在一起形成所谓的时空的客体。
一个事件是在特定时刻和在空间中特定的一点发生的某件事。这样,人们可以用四个数或坐标来指定它。再说一遍,坐标系的选择是任意的;人们可以使用任何三个定义好的空间坐标和任何时间测度在相对论中,在时间和空间坐标之间没有真正的差别,犹如在任何两个空间坐标之间没有真正的差别一样。
麦克斯韦方程预言,不管光源的速度如何,光速应该是一样的。
对于给定的事件P,人们可以将宇宙中的其他事件分成三类。
从事件P出发由一个粒子或者波以等于或小于光速的速度行进能到达的那些事件称为属于P的将来。
P的过去可被定义为下述的所有事件的集合,从这些事件可能以等于或小于光速的速度行进到达事件P。
如果人们忽略引力效应,正如爱因斯坦和庞加莱1905年做的那样,人们就得到了称为狭义相对论的理论。
爱因斯坦在1908年至1914年之间进行了多次不成功的尝试,企图找到一个和狭义相对论协调的引力理论。1915年,他终于提出了今天我们称为广义相对论的理论。
爱因斯坦提出了革命性的思想,即引力不像其他种类的力,它只不过是时空不是平坦的这一事实的结果。
广义相对论的另一个预言是,在像地球这样的大质量的物体附近,时间显得流逝得更慢一些。
光能量和它的频率(光在每秒钟里波动的次数)有一种关系:能量越大,则频率越高。当光从地球的引力场往上行进,它失去能量,因而其频率下降(这表明两个相邻波峰之间的时间间隔变大。)在上面的某个人看来,下面发生的每一件事情都显得需要更长的时间。
在相对论中并没有唯一的绝对时间,相反,每个人都有他自己的时间测度,这依赖于他在何处并如何运动。
罗杰·彭罗斯和我证明了,爱因斯坦广义相对论意味着,宇宙必须有个开端,并且可能有个终结。
最近的恒星叫做比邻星,它离我们大约4光年那么远(从它发出的光大约花费4年才能到达地球),也就是大约23万亿英里的距离。其他大部分肉眼可见的恒星离开我们的距离均在几百光年之内。
我们的星系只是用现代望远镜可以看到的几千亿个星系中的一个,每个星系本身都包含有几千亿颗恒星。
我们生活在一个宽约为10万光年并慢慢旋转着的星系中;在它的螺旋臂上的恒星围绕着它的中心公转一圈大约花费几亿年。
我们的太阳只不过是一颗平常的、平均大小的、黄色的恒星,它位于一个螺旋臂的内边缘附近。
星系越远,它离开我们运动得越快!这表明宇宙不能像人们原先所想象的那样处于静态,而实际上是在膨胀;不同星系之间的距离一直在增加着。
爱因斯坦于1915年发表其广义相对论时,还是这么肯定宇宙必须是静态的,以至于他在其方程中引进一个所谓的宇宙常数来修正自己的理论,使静态的宇宙成为可能。
如果我们看到所有其他的星系都远离我们而去,那似乎我们必须在宇宙的中心。然而,还存在另外的解释:从任何其他星系上看宇宙,在任何方向上也都一样。
如果密度比一个由膨胀率决定的临界值还小,则引力太弱不足以将膨胀停止;如果密度比这临界值大,则引力会在未来的某一时刻将膨胀停止并使宇宙坍缩。
我们知道的不过是,宇宙在每10年里膨胀5%~10%。
现在的证据暗示,宇宙可能会永远地膨胀下去。但是,所有我们能真正肯定的是,既然它已经至少膨胀了100亿年,即便宇宙将要坍缩,至少要再过这么久才有可能。
就我们而言,大爆炸之前的事件不能有后果,所以并不构成我们宇宙的科学模型的一部分。因此,我们应将它们从模型中割除掉,并宣称时间是从大爆炸开始的。
为了结婚,我需要一份工作;为了得到工作,我需要一个博士学位。
1970年彭罗斯和我的合作论文。那篇论文最后证明了,假定广义相对论是正确的,而且宇宙包含着我们观测到的这么多物质,则过去一定有过一个大爆炸奇点。
科学理论,尤其是牛顿引力论的成功,使得法国科学家拉普拉斯侯爵在19世纪初论断,宇宙是完全决定论的。拉普拉斯提出,应该存在一族科学定律,只要我们知道宇宙在某一时刻的完全的状态,我们便能预言宇宙中将会发生的任一事件。
为了预言一个粒子未来的位置和速度,人们必须能够准确地测量它现在的位置和速度。显而易见的办法是将光照到这粒子上。一部分光波被此粒子散射开来,由此指明它的位置。
由普朗克的量子假设,人们不能用任意小量的光;人们至少要用一个光量子。这量子会扰动这粒子,并以一种不能预见的方式改变粒子的速度。
位置测量得越准确,所需的波长就越短,单个量子的能量就越大,这样粒子的速度就被扰动得越厉害。换言之,你对粒子的位置测量得越准确,你对速度的测量就越不准确,反之亦然。
海森伯指出,粒子位置的不确定性乘以粒子质量再乘以速度的不确定性不能小于一个确定量,该确定量称为普朗克常量。
海森伯不确定性原理是世界的一个基本的不可回避的性质。
不确定性原理对我们的世界观有非常深远的影响。甚至到了70多年之后,许多哲学家还不能充分鉴赏它,它仍然是许多争议的主题。
不确定性原理使拉普拉斯的科学理论,即一个完全确定性的宇宙模型的梦想寿终正寝:如果人们甚至不能准确地测量宇宙现在的状态,那么就肯定不能准确地预言将来的事件!
20世纪20年代,在不确定性原理的基础上,海森伯、厄文·薛定谔和保尔·狄拉克运用这种手段将力学重新表述成称为量子力学的新理论。在此理论中,粒子不再分别有很好定义的而又不能被观测的位置和速度。取而代之,粒子具有位置和速度的一个结合物,即量子态。
一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。
大多数科学家愿意接受量子力学,因为它和实验符合得很完美。
亚里士多德相信物质是连续的,也就是说,人们可以将物质无限制地分割成越来越小的小块,即人们永远不可能得到一个不可再分割下去的最小颗粒。
除非你已经是巅峰人物,当今要在实验物理学上留下痕迹极其困难!
人们进行了一系列实验,可惜没有得到任何质子或中子衰变的确实证据。
昌德拉塞卡计算出,一个质量比大约太阳质量一倍半还大的冷的恒星不能维持本身以抵抗自己的引力。(这质量现在称为昌德拉塞卡极限。)
如果一颗恒星的质量比昌德拉塞卡极限小,它最后会停止收缩,并且变成一种可能的终态——“白矮星”。白矮星的半径为几千英里,密度为每立方英寸几百吨。
白矮星是由它物质中电子之间的不相容原理排斥力支持的。
朗道指出,恒星还存在另一种可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力支持的,所以它们叫做中子星。它们的半径只有10英里左右,密度为每立方英寸几亿吨。
广义相对论方程存在一些解,我们的航天员在这些解中可能看到裸奇点:他也许能避免撞到奇点上去,相反的穿过一个“虫洞”来到宇宙的另一区域。看来这给在时空内的旅行提供了大的可能性。但是不幸的是,所有这些解似乎都是非常不稳定的;最小的干扰,譬如一个航天员的存在就会使之改变,以至于他还没能看到此奇点,就撞上去而终结了他的时间。
宇宙监督假想强的版本是说,在一个现实的解里,奇点总是要么整个存在于将来(如引力坍缩的奇点),要么整个存在于过去(如大爆炸)。
事件视界,也就是时空中不可逃逸区域的边界,其行为犹如围绕着黑洞的单向膜:物体,譬如粗心的航天员,能通过事件视界落到黑洞里去,但是没有任何东西可以通过事件视界而逃离黑洞。
人们可以将诗人但丁针对地狱入口所说的话恰到好处地应用于事件视界:“从这里进去的人必须抛弃一切希望。”任何东西或任何人,一旦进入事件视界,就会很快地到达无限致密的区域和时间的终点。
在引力坍缩之后,一个黑洞必须最终演变成一种能够旋转,但是不能搏动的态。此外,它的大小和形状,只决定于它的质量和旋转速度,而与坍缩形成黑洞的原先物体的性质无关。
黑洞是科学史上极为罕见的情形之一,在没有任何观测到的证据说明其理论是正确的情形下,作为数学的模型被发展到非常详尽的地步。
他们将这四个最早发现的源称为LGM1-LGM4,LGM表示“小绿人”(“LittleGreenMan”)的意思然而,最终他们和其他所有人都得到了不那么浪漫的结论,这些被称为脉冲星的物体,事实上是旋转的中子星。因为它们的磁场和周围物质复杂的相互作用,这些中子星发出射电波的脉冲。
中子星的半径大约为10英里,只是恒星变成黑洞的临界半径的几倍。如果一颗恒星能坍缩到这么小的尺度,预料其他恒星能坍缩到更小的尺度而成为黑洞,就是理所当然的了。
仅仅在我们的星系中,大约总共有1000亿颗可见恒星。这样巨大数量的黑洞的额外引力就能解释为何目前我们的星系以现有的速率转动:仅用可见恒星的质量是不足以说明这一点的我们还有某些证据表明,在我们星系的中心有一个大得多的黑洞,其质量大约是太阳的10万倍。
黑洞毕竟不是真黑:它们像一个热体一样发热发光,它们越小则发热发光得越厉害。
热力学第二定律是这个观念的一个准确描述。它陈述道:一个孤立系统的熵总是增加的,并且将两个系统连接在一起时,其合并系统的熵大于所有单独系统熵的总和。
黑洞辐射的存在似乎意味着,引力坍缩不像我们曾经认为的那样是最终的、不可逆转的。
如果一个航天员落到黑洞中去,黑洞的质量将增加,但是最终这额外质量的等效能量将会以辐射的形式回到宇宙中去。
我对伽利略之所以有一种强烈的认同感,其部分原因是我刚好出生于他死后的300年!
第一种原始的生命形式消化了包括硫化氢在内的不同物质,而释放出氧气。这就逐渐地将大气改变成今天这样的成分,并且允许诸如鱼、爬行动物、哺乳动物以及最后人类等生命的更高形式的发展。
人存原理可以解释为:“我们看到的宇宙之所以如此,乃是因为我们的存在。”
人存原理有弱的和强的意义下的两种版本。
弱人存原理是讲,在一个大的或具有无限空间和/或时间的宇宙里,只有在某些时空有限的区域里,才存在智慧生命发展的必要条件。
如果智慧生物观察到他们在宇宙的位置满足他们存在必要的条件,他们就不应感到惊讶。这有点像生活在富裕街坊的富人看不到任何贫穷。
在我们能观察到的宇宙中大约有1亿亿亿亿亿亿亿亿亿亿(1后面跟80个0)个粒子。
宇宙的总能量准确为零。宇宙中的物质是由正能量产生的。然而,物质本身由于引力总是吸引的。两块相互靠近的物质比两块分得很开的物质具有较少的能量,因为你必须消耗能量去克服把它们拉在一起的引力才能将其分开。这样,在一定意义上,引力场具有负能量。在空间上大体一致的宇宙的情形中,人们可以证明,这个负的引力能刚好抵消了物质所代表的正能量。这样,宇宙的总能量为零。
时空是有限而“无界”的思想仅仅是一个设想,它不能从其他原理导出。
算盘的原理和计算机表储器很类似。每个算盘珠可处于两个位置的一个:改变算盘珠的位置需要一定的能量。
问题。收缩相的条件不适合智慧人类的存在,而正是他们能够提出这个问题:为何无序度增加的时间方向和宇宙膨胀的时间方向相同?
为了生存下去,人类必须消耗能量的一种有序形式——食物,并将其转化成能量的一种无序形式——热量,这样智慧生命不能在宇宙的收缩相中存在。这就解释了为何我们观察到热力学和宇宙学的时间箭头指向一致。
并不是宇宙的膨胀导致无序度的增加,而是无边界条件引起无序度的增加,并且只有在膨胀相中才有适合智慧生命的条件。
人们也许可以把时空卷曲起来,使得A和B之间有一近路。在A和B之间创生一个虫洞就是一个法子。
虫洞就是一个时空细管,它能把两个相隔遥远的几乎平坦的区域连接起来。
1935年爱因斯坦和纳珍·罗森写了一篇论文。在该论文中他们指出广义相对论允许他们称为“桥”,而现在称为虫洞的东西。
我们对以下两种现象都获得了实验的证据。第一,从日食时的光线偏折得知时空可以被卷曲。第二,从卡西米尔效应得知时空可被弯曲成允许时间旅行的样子。
人们也许希望,随着科学技术的推进,我们最终能够造出时间机器。但是,如果这样的话,为什么从来没有一个来自未来的人回来告诉我们如何实现呢?鉴于我们现在处于初级发展阶段,也许有充分理由认为,让我们分享时间旅行的秘密是不智的。
未曾有过对来自未来的访客,这可以用以下方法解释,因为我们观察了过去,并且发现它并没有允许从未来旅行返回必需的那类卷曲,所以过去是固定的。另一方面,未来是未知的开放的,所以也可能有需要的曲率。这意味着,任何时间旅行都被限制于未来。
如果可能回到以前并改变历史,则不能够回避引起的问题。例如,假定你回到过去并且将你的曾曾祖父在他仍为孩童时杀死。这类佯谬有许多版本,但是它们根本上是等效的:如果一个人可以自由地改变过去,则他就会遇到矛盾。
协调历史方法。它是讲,甚至当时空被卷曲得可能旅行到过去时,在时空中发生的必须是物理定律的协调的解。根据这个观点,除非历史表明,你曾经到达过去,并且当时并没有杀死你的曾曾祖父或者没有干过任何事和你的现状相冲突,你才能在时间中回到过去。
对于像人这么复杂的机体,其制约和决定方式是不可能计算出来的。我们之所以说人们具有意志,乃在于我们不能预言他或她的未来行动。
选择历史假说。其思想是,当时间旅行者回到过去,他就进入和记载的历史不同的另外历史中去。
爱因斯坦用他晚年的大部分时间寻求一个统一理论,但是没有成功。
尽管他本人对量子力学的发展起过重要的作用,但他拒绝相信它的真实性。
在弦理论中,原先以为是粒子的东西,现在被描绘成在弦里旅行的波动,如同振动着的风筝的弦上的波动。
弦理论有一个古怪的历史。它原先是60年代后期被发明出来,以试图找到描述强力的理论。其思想是,诸如质子和中子这样的粒子可被认为是一根弦上的波动。这些粒子之间的强力对应于连接其他一些弦之间的弦的片段,正如在蜘蛛网中一样。
1984年,由于两个明显的原因,人们对弦理论的兴趣突然复活。一个原因是,在证明超引力是有限的以及解释我们观察到的粒子的种类方面,人们未能真正取得进展。另一个原因是,约翰·施瓦兹和伦敦玛丽皇后学院的迈克·格林发表的一篇论文指出,弦理论可以解释内禀的左手征性的粒子存在,正如我们观察到的一些粒子那样。
如果这些额外的维确实存在,为什么我们全然没有觉察到它们呢?为何我们只看到三个空间维和一个时间维呢?人们的看法是,其他的维被弯卷到非常小的尺度——大约为一百万亿亿亿分之一英寸的空间,人们根本无从觉察这么小的尺度:我们只能看到一个时间维和三个空间维,在这些维中时空是相当平坦的。
我们试图采用某种世界图来回答这些问题。如同一个无限的乌龟塔背负平坦的地球是这样的图象一样,超弦理论也是一种图象。虽然后者比前者更数学化,更准确得多,但两者都是宇宙的理论。两个理论都缺乏观测的证据:没人看到一个背负地球的巨龟,但也没有人看到超弦。
龟理论作为一个好的科学理论是不够格的,因为它预言了人会从世界的边缘掉下去。除非可以用它释人们在百慕大三角消失的传说,否则这个理论和经验不一致!
最早在理论上描述和解释宇宙的企图牵涉到这样一种思想:具备人类情感的灵魂控制着事件和自然现象,它们的行为和人类非常相像,并且是不可预言的。这些灵魂栖息在自然物体,诸如河流、山岳以及包括太阳和月亮这样的天体之中。
拉普拉斯的决定论在两个方面是不完整的:它没讲应该如何选择定律,也没指定宇宙的初始状态。这些都留给了上帝。
只是当我们试图按照粒子的位置和速度对波做解释的时候,不可预见性的随机的要素才出现。但这也许是我们的错误:也许不存在粒子的位置和速度,只有波。只不过是我们企图将波硬套到我们关于位置和速度的先入为主的观念之上而已。由此导致的不协调乃是表面上不可预见性的原因。
以寻根究底为己任的哲学家跟不上科学理论的进步。
在18世纪,哲学家把包括科学在内的整个人类知识当做他们的领域,并讨论诸如宇宙有无开端的问题。然而,在19世纪和20世纪,对哲学家或除了少数专家以外的任何人来说,科学变得过于专业性和数学化了。
哲学家把他们的质疑范围缩小到如此程度,以至于连维特根斯坦,这位20世纪最著名的哲学家都说道:“哲学余下的任务仅是语言分析。”这是从亚里士多德到康德哲学的伟大传统的何等堕落啊!
当一本题为《100个反爱因斯坦的作家》的书出版时,他反驳道:“如果真是我错了的话,有一个人反对我就足够了!”
面对着纳粹的威胁,爱因斯坦放弃了和平主义,由于担心德国科学家会制造核弹,他终于建议美国应该发展自己的核弹。
方程对我而言更重要些,因为政治是为当前,而方程却是永恒的东西。
艾萨克·牛顿是一个不讨人喜欢的人。他和其他院士的关系声名狼藉。他在激烈的争吵中度过晚年的大部分时间。
莱布尼茨和牛顿各自独立地发展了称作微积分的数学分支,它是大部分近代物理的基础。虽然现在我们知道,牛顿发现微积分要比莱布尼茨早若干年,可是他比莱布尼茨晚很久才出版他的著作。
大多数为牛顿辩护的文章均出自牛顿本人之手,虽然是以他朋友的名义出版!
当争论日趋激烈时,莱布尼茨犯了向皇家学会起诉来解决争端的错误。牛顿作为其主席,指定一个清一色的由牛顿的朋友组成的“公正的”委员会来审查此案!
牛顿后来自己写了一个委员会报告,并让皇家学会将其出版,正式地谴责莱布尼茨的剽窃行为。即便如此,牛顿心犹未足,他又在皇家学会的杂志上写了一篇匿名的、关于该报告的回顾。
据报道,莱布尼茨死后,牛顿扬言他为“伤透了莱布尼茨的心”而洋洋得意。
在剑桥他曾积极从事反天主教政治,后来在议会中也很活跃。最终,作为酬报,他得到皇家造币厂厂长的肥差。
人存原理:我们之所以看到宇宙是这个样子,是因为如果它不是这样的话,我们就不会在这里去观察它。
反粒子:每个类型的物质粒子都有相对应的反粒子。当一个粒子和它的反粒子碰撞时,两者就湮灭,只留下能量。
事件视界:黑洞的边界。
光锥:时空中的面,在上面标出光通过一给定事件的可能方向。
奇点:时空中的一点,在该处时空曲率(或者一些其他的物理量)变得无限大。
弦论:物理学的理论,在该理论中粒子被描述成弦上的波。弦具有长度,但没有其他维。
强力:4种基本力中最强的,作用距离最短的一种力。它在质子和中子中将夸克束缚在一起,并将质子和中子束缚在一起形成原子核。
不确定性原理:海森伯表述的一个原理,该原理说,人们永远不能够精确地同时知道粒子的位置和速度;对其中的一个知道得越精确,则对另外一个就知道得越不精确。
虫洞:联结宇宙的遥远区域的时空细管。虫洞还可以联结到平行或婴儿宇宙,并且能够提供时间旅行的可能性。